

ARIZONA DEPARTMENT OF ENVIRONMENTAL QUALITY

Stephen A. Owens
Director

1110 West Washington Street • Phoenix, Arizona 85007 (602) 771-2300 • www.azdeq.gov

Assessment of Qualification for Treatment under the Arizona Natural and Exceptional Events Policy for the High Particulate (PM_{10}) Concentration Events in the Nogales, Arizona Area on October 27, 2007

Background

The Arizona Department of Environmental Quality (ADEQ) operates monitors at the Post Office in Nogales, Arizona for PM_{10} and $PM_{2.5}$ and at the Fire Station in Nogales, Sonora for PM_{10} . Federal Reference Method (FRM) filter-based samples are collected at both locations. A Beta-Attenuation Monitor System (BAMS) collects hourly concentration data at the Post Office site.

During the evening of October 27, 2007, a strong night-time temperature inversion set up in the Nogales area. With no significant ventilating winds available to break up the surface inversion, the inversion intensified and set up a drainage flow from the higher terrain to the south in Mexico through Nogales, Sonora, and into Nogales, Arizona.

The event brought significant elevated ambient concentrations of PM_{10} that exceeded the National Ambient Air Quality Standards (NAAQS) at the ADEQ Nogales

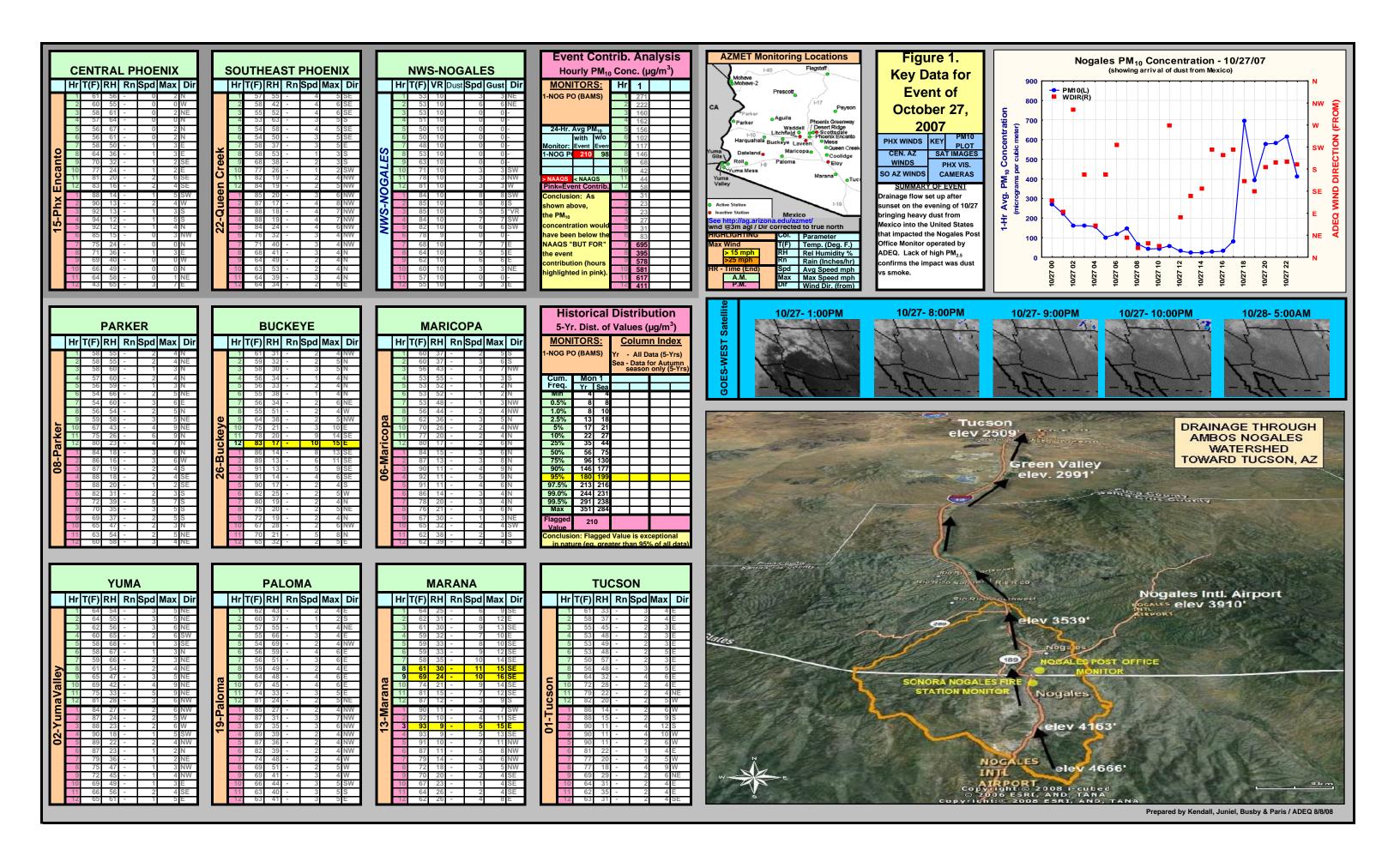
Post Office monitors (BAMS). The fact that ambient concentrations exceed the NAAQS satisfies the criteria in 40 CFR 50.1(j) that the event "affects air quality."

Preliminary indications are that emissions from sources in Mexico, which are not subject to control by the Arizona state implementation plan (SIP), may have contributed to the event.

A PM_{10} SIP exists for Nogales, Arizona. All appropriate SIP control measures were in place during the event demonstrating, per 40 CFR 50.1(j), that the event "is not reasonably controllable or preventable," if in fact emissions from Mexico caused the exceedance.

Elevated PM₁₀ and PM_{2.5} concentrations were measured in the Nogales area. The following are the key PM monitor readings for the monitors examined in this report:

Monitor (Operator/Type) NOGALES AREA	AQS ID*	24-hr Avg PM ₁₀ or PM _{2.5}	1-hr Max PM ₁₀ or PM _{2.5}	Time of Max 1-hr	Flag**
Nogales AZ Post Office PM ₁₀ (ADEQ/BAM)	04-023-0004 (3)	210	695	1800	RL
Nogales AZ Post Office PM _{2.5} (ADEQ/BAM)	04-023-0004 (3)	28.0	88	1800	None


EPA Air Quality System Identification Number

The preliminary findings from this analysis were presented at a stakeholders meeting on June 11, 2008, in Phoenix, Arizona, and on June 17, 2008, in Nogales, Arizona. Public comment was solicited on the preliminary findings from May 28 through June 26, 2008. During that time, no comments were received from the public. ADEQ has

finalized this demonstration, which was made available for public comment from August 11, 2008, through September 10, 2008. Any comments that were received were forwarded to EPA with this demonstration pursuant to 40 CFR 50.14(c)(3)(i).

^{** 24-}hr PM₁₀ concentration influenced by exceptional event (international transport) to be flagged.

Type Abbreviations: BAM – Beta-Attenuation Mass Monitor (Continuous monitor)

Assessment Under the Technical Criteria Document (TCD)

- 1. Properly qualify and validate the air quality measurement to be flagged. As this was not a filter sampling date (1-in-6 run day), only data from the continuous analyzers were examined. The air quality monitoring data were reviewed by ADEQ, the agency responsible for operation of the monitor. All hourly PM_{10} and $PM_{2.5}$ readings from the Nogales BAMS monitors were found to be valid for October 27^{th} . No specific local sources were reported as significantly contributing to the air quality episode.
- 2. Review suspected contributing sources. The event began on the evening of October 27^{th} . There was not a significant fraction of PM_{2.5} measured during this episode. This is typical for the arid southwest, except when smoke from smoldering fires can be a significant source of PM_{2.5}. Lack of any significant transport winds would indicate that the emissions are from nearby the monitor. The plot of hourly PM₁₀ concentration data in the upper right corner of Figure 1, in conjunction with the wind direction data, confirms the identical timing of the transport from the south across the U.S. / Mexico border when the elevated PM concentrations began. It is clear from the PM_{2.5} data presented in the table in the Background section of this report that smoke was not a major contributor to this event.
- 3. Examine all air quality monitoring information. Data from all monitors in the network were reviewed. Monitors from the Nogales area are summarized in the table in the Background section of this assessment. Pursuant to 40 CFR 50.14(c)(3)(iii)(C), the "Historical Distribution" Table in Figure 1 has been included to demonstrate that the event is associated with measured concentrations in excess of normal historical fluctuations, including background (i.e., concentrations greater than the 95th percentile).
- 4. Examine the meteorological conditions before and during the event. Figure 1 includes a map showing the terrain and drainage patterns of the Nogales area. Cold air forming in the mountains south of the border will flow northward into the Santa Cruz River Drainage Basin. National Weather Service data from the Nogales Airport,

- northeast of the city, showed calm to light and variable winds in the evening hours from the east or south. The data from ADEQ's wind monitor are included in the PM daily report sheet (see attachments). At the Post Office, winds shifted to being from the south at approximately 6:00 p.m. at 1-2 miles per hour. The concentrations picked up on the evening of October 27th when the winds shifted and started moving out of the south. It appears the source is coming from Mexico, since there are no sources in the United States between the monitor and the border.
- 5. Perform a qualitative attribution to emission source(s). All evidence indicates the elevated PM_{10} and $PM_{2.5}$ concentrations in the Nogales, Arizona area can be attributed to dust emissions from sources south of Nogales, Arizona in Nogales, Sonora. The data available for this analysis do not allow for development of a source specific emission allocation. The hourly concentration data do not show any significant source other than the drainage dust and smoke associated with the event.
- 6. Estimation of Contribution from Source or Event. The primary source appears to be drainage dust from Mexico for which there is no effective or efficient method to estimate the relative contributions from specific sources. The demonstration analysis contained in this report establishes the linkage between the measurements to be flagged and the event, thus satisfying the requirement in 40 CFR 50.14(c)(3)(iii)(B). Pursuant to 40 CFR 50.14(c)(3)(iii)(D), the "Event Contrib. Analysis" Table in Figure 1 has been included to demonstrate that there would have been no exceedances or violations but for the event (i.e., the contribution during the event overwhelmed the 24-hour average).
- 7. Determination that a Natural or Exceptional Event Contributed To an Exceedance. Based on this analysis, the event satisfies the requirement in 40 CFR 50.1(j) that the elevated concentration at Nogales Post Office monitor was attributed to an exceptional event caused by international transport of emissions into the United States.

Conclusion

<u>International transport of emissions</u>. The elevated PM_{10} event on October 27, 2007, in Nogales, Arizona was the result of emissions from Mexico which were transported into the United States in a slow moving drainage flow originating in the mountains south of Nogales, Sonora.

The fact that all appropriate SIP control measures were in place and emissions from international transport caused the exceedance demonstrates that, per 40 CFR 50.1(j), that the event "is not reasonably controllable or preventable."

The "other" flag (RL) was applied to the PM_{10} measurements, as the monitors would have been below the NAAQS but for the contribution of the event.

U.S. Department of Commerce National Oceanic & Atmospheric Administration

QUALITY CONTROLLED LOCAL CLIMATOLOGICAL DATA (final) HOURLY OBSERVATIONS TABLE NOGALES INTERNATIONAL ARPT (03196) NOGALES , AZ (10/2007)

National Climatic Data Center Federal Building 151 Patton Avenue Asheville, North Carolina 28801

Elevation: 3908 ft. above sea level

Latitude: 31.421 Longitude: -110.846 Data Version: VER2

	Sky Conditions	Visibility (SM)	Weather Type	Dry Bulb Temp		E	Bulb P		Dew Point Temp Rel Humd		Wind Speed (MPH)	Wind Dir	Wind Gusts (MPH)	Station Pressure (in. hg)	Press Tend	Net 3-hr Chg	Sea Level Pressure	Report Type	Precip. Total (in)	Alti- meter (in. hg)		
						(F)	(C)	(F)	(C)	(F)	(C)	70	(1411 11)		(1011 11)	(III. IIg)		(mb)	(in. hg)		(111)	(111. 119)
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
27	0054	12	CLR	10.00		53	11.7	42	5.8	30	-1.1	41	3	060		26.15			30.04	AA		30.20
27	0154	12	CLR	10.00		53	11.7	43	6.0	31	-0.6	43	6	060		26.15	0	005	30.03	AA	l .	30.20
27	0254	12	CLR	10.00		53	11.7	42	5.8	30	-1.1	41	0	000		26.15			30.04	AA		30.20
27	0354		CLR	10.00		51	10.6	42	5.4	31	-0.6	46	0	000		26.16			30.05	AA		30.21
27	0454		CLR	10.00		50	10.0	42	5.3	32	0.0	50	0	000		26.16	1	005	30.06	AA	l .	30.21
27	0554		CLR	10.00		50	10.0	41	5.1	31	-0.6	48	0	000		26.18			30.10	AA	l .	30.23
27	0654	12	CLR	10.00		48	8.9	41	4.8	32	0.0	54	0	000		26.20			30.14	AA	l .	30.25
27	0754		CLR	10.00		53	11.7	43	6.2	32	0.0	45	0	000		26.21	1	016	30.14	AA		30.26 30.27
27	0854		CLR	10.00		63	17.2	48	8.9	33	0.6	33	0	000		26.22			30.14	AA	l .	30.27
27	0954		CLR	10.00		71	21.7	51	10.7	32	0.0	24	3	230		26.23			30.12	AA	l .	30.28
27	1054		CLR	10.00		78	25.6	54	12.2	32	0.0	19	3	330			0	001	30.11	AA		30.27
27	1154		CLR	10.00		81	27.2	54	12.4	29	-1.7	15	3	250		26.19			30.08	AA	l .	30.24
27	1254		CLR	10.00		84	28.9	55	12.8	28	-2.2	13	8	210		26.16			30.05	AA	l .	30.21
27	1354		CLR	10.00		85	29.4	56	13.0	28	-2.2	13	8	160			6	021	30.03	AA		30.20
27	1454		CLR	10.00		85	29.4	56	13.2	29	-1.7	13	5	VR		26.14			30.02	AA	l .	30.18
27	1554		CLR	10.00		84	28.9	55	12.8	28	-2.2	13	7	220		26.14			30.02	AA		30.18
27	1654		CLR	10.00		82	27.8	54	12.2	27	-2.8	13	6	230			5	004	30.03	AA	l .	30.19
27	1754			9.00		78	25.6	53	11.5	28	-2.2	16	0	000		26.15			30.06	AA		30.20
27	1854		CLR	10.00		68	20.0	49	9.6	30	-1.1	24	7	080		26.17			30.10	AA		30.22
27	1954		CLR	10.00		64	17.8	48	8.6	30	-1.1	28	5	070			3	017	30.12	AA		30.24
27	2054		CLR	10.00		62	16.7	46	7.9	29	-1.7	29	6	080		26.21			30.12	AA		30.26
27	2154		CLR	10.00		60	15.6	45	7.2	28	-2.2	30	3	060		26.22			30.12	AA		30.27
27	2254	12	CLR	10.00		57	13.9	44	6.4	28	-2.2	33	0	000		26.22	1	009	30.11	AA		30.27
27	2354	12	CLR	10.00		55	12.8	43	6.1	29	-1.7	37	3	080	I	26.23			30.12	AA	ı	30.28

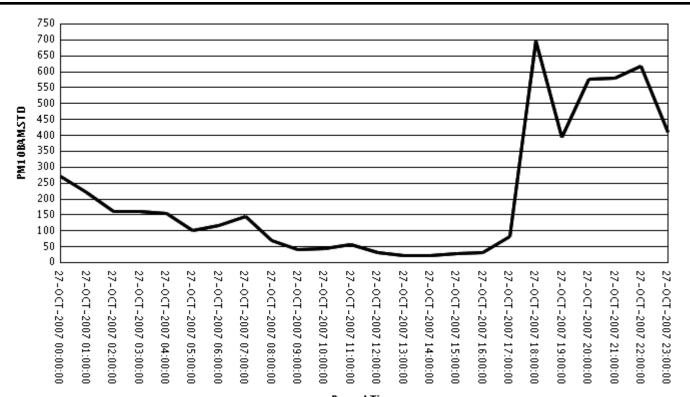
Dynamically generated Thu Jan 10 15:32:41 EST 2008 via http://cdo.ncdc.noaa.gov/qclcd/QCLCD

Arizona Department of Environmental Quality

AAATEOM_GRAPH

01/07/2008

AIR QUALITY DIVISION


PM10BAM.STD Daily Concentration Report (ug/m3) For 10/27/2007

Preliminary Data QA LEVEL - 2

Place ID: 16511

DEPARTMENT

Name: **NOGALES POST OFFICE**

Record Time

Record Time	PM Average	Wind Speed (MPH)	Wind Direction	Temperature(F)	Relative Humidity
27-OCT-2007 00:00:00	271	1.3	115		
27-OCT-2007 01:00:00	222	.9	92		
27-OCT-2007 02:00:00	160	.2	302		
27-OCT-2007 03:00:00	162	.4	168		
27-OCT-2007 04:00:00	156	.7	65		
27-OCT-2007 05:00:00	102	.7	168		
27-OCT-2007 06:00:00	117	.2	230		
27-OCT-2007 07:00:00	146	.4	39		
27-OCT-2007 08:00:00	68	1.1	19		
27-OCT-2007 09:00:00	42	1.3	29		
27-OCT-2007 10:00:00	44	3.1	23		
27-OCT-2007 11:00:00	58	2.9	269		
27-OCT-2007 12:00:00	31	3.6	82		
27-OCT-2007 13:00:00	23	2.7	125		
27-OCT-2007 14:00:00	23	3.1	140		
27-OCT-2007 15:00:00	27	5.8	220		
27-OCT-2007 16:00:00	31	4.7	209		
27-OCT-2007 17:00:00	83	2.7	220		
27-OCT-2007 18:00:00	695	1.3	155		
27-OCT-2007 19:00:00	395	1.6	134		
27-OCT-2007 20:00:00	578	1.6	183		
27-OCT-2007 21:00:00	581	1.6	193		
27-OCT-2007 22:00:00	617	2	195		
27-OCT-2007 23:00:00	411	.9	189		